Game theory
Constraint Programming
Constraint Games

A Complete Solver for Constraint Games

Thi Van-Anh Nguyen, Arnaud Lallouet
GREYC, Normandie University, France

COSlI, June 10, 2014

GREYCE®

CODAG

Thi-Van-Anh Nguyen is supported by Microsoft Research grant MRL-2011-046

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Contents

@ Game theory

® Constraint Programming

©® Constraint Games

Game theory
Constraint Programming
Constraint Games

Strategic games: the setting _

o A set of Players .

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Strategic games: the setting

o A set of Players

e Each player performs
Actions...

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Strategic games: the setting

o A set of Players

e Each player performs
Actions...

e ... and wants to maximize an
Utility depending on other
players actions

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Strategic games: the setting

A set of Players

Each player performs
Actions...

e ... and wants to maximize an
Utility depending on other
players actions

o
o
[e]

Different players have
different utilities

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Strategic games: the setting

A set of Players

e Each player performs
Actions...

e ... and wants to maximize an
Utility depending on other
players actions

[V
o
o

o Different players have
different utilities

e Strategic form, also called
multimatrix model

In this talk: finite games only (also simultaneous, perfect information, selfish
players)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Solution concept

How can we tell when a player is satisfied?

Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Solution concept

How can we tell when a player is satisfied?

Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:
Pure Nash Equilibrium

31 13 | 24

21 31 12

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Solution concept

How can we tell when a player is satisfied?

Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:
Pure Nash Equilibrium

13 | 21 12 13 | 21 12
31 13 | 24 31 13 | 24
21 31 12 21 31 12

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Solution concept

How can we tell when a player is satisfied?

Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:
Pure Nash Equilibrium

13 | 21 12 13 | 21 12 1 2
31 13 | 24 31 13 | 24 3 1 2
21 31 12 21 31 12 2 3

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Solution concept

How can we tell when a player is satisfied?

Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:
Pure Nash Equilibrium

13 | 21 12 13 | 21 12 1 2
31 13 | 24 31 13 | 24 3 1 2
21 31 12 21 31 12 2 3 1 1 2

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Solution concept

How can we tell when a player is satisfied?

Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:
Pure Nash Equilibrium

13 | 21 12 13 | 21 12 1 2
31 13 | 24 31 13 | 24 3 1 2
21 31 12 21 31 12 2 3 1 1 2

Many solution concepts...

e Mixed Nash equilibrium: probability distribution on actions as to maximize
esperance of expected utility

e Pareto Nash equilibrium: such that no Pure Nash equilibrium has better
utility for all players

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Pure Nash Equilibrium

Economists point of view:
e Accepted solution concepts do not guarantee uniqueness

e A game with no equilibrium or with multiple equilibria means that the
modeler has failed to provide a full and precise prediction for what will happen

e Example: Nash theorem: any finite game in strategic form has a mixed Nash
equilibrium

Modeling point of view

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Pure Nash Equilibrium

Economists point of view:
e Accepted solution concepts do not guarantee uniqueness

e A game with no equilibrium or with multiple equilibria means that the
modeler has failed to provide a full and precise prediction for what will happen

e Example: Nash theorem: any finite game in strategic form has a mixed Nash
equilibrium

Modeling point of view

Computer scientists point of view:
e Problems sometimes do not have solution
e Game rules are given and the problem is to find a solution

e Example: efficient allocation in electricity grid market consist to connect
producers and customers

Solving point of view

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Const

How to solve games?

A bit of formalism...
A game is a 3-uple G = (P, A, U)
e P is a set of players
o A= (A))iep is a set of actions for each player
o U= (uj)icp is a set of utility functions for each player, u; : MA — R

Strategies and Equilibrium
e A strategy for player i is the choice of an action s; € A;
o A strategy profile is the given of a strategy for each player (a tuple s € MMA)

We denote by s_; the strategy profile of players other than i, s = (s;.5_;)
e s is winning for i if Vs! # s;, uj(s!.s_;) < u;(si.s—;)

e s is a Pure Nash Equilibrium (PNE) if Vi, s; is winning for i

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Types of dominance

e s; is strongly dominated by s/ if Vs_;, ui(s;.5—;) < ui(s!.s_;)

3 5 1
4 1 2
3 2 2

Strongly dominated

Undominated

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Dominance

Types of dominance
e s; is strongly dominated by s/ if Vs_;, ui(s;.5—;) < ui(s!.s_;)

e s; is weakly dominated by s/ if Vs_;, ui(si.s—;) < u;(s].s—;)

©
©

Weakly dominated
Strongly dominated

Undominated

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Dominance

Types of dominance
e s; is strongly dominated by s/ if Vs_;, ui(s;.5—;) < ui(s!.s_;)
e s; is weakly dominated by s/ if Vs_;, ui(si.s—;) < u;(s].s—;)

e s; is never best response if Vs_;,3s! € A; s.t. u;i(s;.s5—;) < ui(s!.s_;)

4 1 2 2 2

3 2 2 3 2

-
‘k Never Best Response
Weakly dominated
Strongly dominated

Undominated

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

A generic algorithm to solve games

Solve
function solve(s): tuple
for s € MA do
if nash(s) then
return s
end if
end for

return not found

Deviation

function deviation(s, i): boolean
for v € Aj, v # s; do
if uj(v.s—;) > uj(s) then
return true
end if
end for
return false

Nash

function nash(s): boolean
for i € P do
if deviation(s, i) then
return false
end if
end for
return true

Thi Van-Anh Nguyen, Arnaud Lallouet

Analysis

® [nefficient but still the baseline
algorithm

® Implemented in the Gambit
solver? along with IESDS
[McKelvey and al, 2010]

?http://www.gambit-project.org/

A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Contents

@ Game theory

® Constraint Programming

® Constraint Games

Game theory
Constraint Programming
Constraint Games

Constraint Satisfaction Problems

Constraint Programming is a way of stating and solving problems using variables
and constraints.

Definition (CSP)

A Constraint Satisfaction Problem (or CSP) is built out of 3 parts:
e V: a set of variables
e D: a set of domains
e C: a set of constraints

Here, we focus on Finite Domain CSP

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Constraint Satisfaction Problems

Definition (CSP)

A CSP is a set of constraints.

Logically, it means the conjunction of the constraints.

Definition (Solution)

A solution is an assignment of all variables that satisfies all the constraints
simultaneously.

Example (X < Y < 2)
With X,Y,Z € [1..3], the unique solutionis X =1,Y =27 = 3.

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Tree search

Search state:

Let C = (V,D,C) a CSP.
A search state is composed of a current domain for each variable(a subset of Dx
for each X).

Basic algorithm:
e If the current state represents a solution tuple, return this solution
e If the current state represent a non-solution tuple, fail
o Else, create a tree by adding to each branch a constraint:

NP-complete problem: Importance of a good heuristics !

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Local consistency

Reasoning on the CSP:
Consider X > Y-

Y Y

It is not possible for X to take value 1 and being greater than Y
It is not possible for Y to take value 3 and being lesser than X

Domain Reduction for our X m

Example

We can prune safely these two % m

values:

Iteration of the technique up to a fixed point yields consistency

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Constraint Programming

Modeling Language

CP as a modeling language includes other facilities:

e global constraints: common modeling element with a specific efficient
algorithm
e all-different ensures that all variables take different values
e cumulative ensures that a schedule under resource constraints is feasible
e element relates a value to its position in a table
e ... the Global Constraint Catalogue records more than 300 global constraints
[Beldiceanu and al]

choice of heuristics

modeling language: OPL, MiniZinc, ...

multiple domains

multiple extension: optimization, soft constraints, quantification, ...

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Contents

@ Game theory

® Constraint Programming

©® Constraint Games

Game theory
Constraint Programming
Constraint Games

Game representation problem

Normal form
e Normal form needs a matrix for representing utilities
e Matrix grow exponentially with the number of players
e 100 players x 2 actions = 100 x 21% entries !

Compact representation is needed!

and many games have a natural understanding

Language for utilities
o if the utilities are not just random, they can (often) be expressed in a
language
e better to understand utilities in terms of simple relationships than lookup in
enormous tables

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Constraint Games

The idea
Use CSP to express utilities

Constraint Satisfaction Game

A Constraint Satisfaction Game (CSG) is a 4-uple CG = (P, V, D, G) where
e P is a set of players
e V is a set of variables, Player i controls V; C V

D = (Dy)xev defines a (finite) domain for each variable
G = (G))icp is a family of CSP

Preferences

e CSPs provide a compact and natural formalism to express satisfaction for a
player: G; is called Goal of Player i

e Goals express preferences and an equilibrium may hold if a player is not
satisfied (and cannot be)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Example of CSG

A simple example:
e Players: P={X,Y,Z}
e Each player owns one variable: Vx = {x}, Vy = {y} and Vz = {z} with
D(x) = D(y) = D(z) ={0,1,2}
e Goalsare Gx = {x#y,x >z}, Gy ={x<y,y >z} and Gz = {x—l—y:z}A

Payoff multimatrix

z=0 y z=1 y
0 1 2 0 1 2
0 (0,0,1) (0,1,0) (0,1,0 0 (0,0,0) 0,01 (0,1,0)
x 1 (1,0,0) (0,1,0) (1,1,0 x 1 (0,01) 0,0,0 (0,1,0)
2 (1,0,0) (1,0,0) (0,1,0 2 (1,0,0) 1,0,0 (0,1,0)
z=2 y
0 1 2

0 (0,0,0) (0,0,0) (0,0,1)
x 1 (0,0,0) (0,0,1) (0,0,0)
2 (0,0,1) (0,0,0) (0,0,0)

in bold are Nash equilibria and italics Nash equilibria with no player satisfied

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Constraint Games

COG and hard constraints

Constraint Optimization Games

Constraint Programming provides an easy way to express optimization: add
min(X) or max(X) to the goal of each player

e Allows to represent in a natural way many useful games (see examples after)

v

Hard constraints
CSG/COG can be enhanced with a set of hard constraints (HC) to forbid invalid
equilibria
e a strategy profile which does not satisfy HC cannot be an equilibrium and
should not be checked for deviations

e impossible to represent in the matrix model (even by giving a dummy value)

v

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Location Game (Hotelling, 1929)

Variables
e P={1,.,n} { 1)

1 2 3 4 5 6 7 8 9 10 " 12 13 14

o VieP,D(L)={1,...m}

e costj.: define the cost customer ¢ has to pay if he/she chooses the stand of
seller .

e min.: defines the minimal cost customer ¢ has to pay for an ice cream.
e choicej.: boolean variable takes 1 if customer ¢ chooses seller i.

e benefit;: defines the number of customers actually buying from seller i.

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Location Game

Hard constraints

e no two vendors are located at the same place: all_different(h, b, . ..

o Vi€ P,Vce[l.m], costic = |c — li| + p;

e V¢ € [1..m], min. = min(costyc, . ..,COStpc)
e V¢ € [1..m], (min. =cost;.) < (choice; = 1)
e Ve € [l.m],), pchoice;. =1

7/")

Goal
e G;: benefit; = p;. >
e Optimization condition Opt; = max(benefit;)

cel1..mChoiceic

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Cloud Resource Allocation Game [Jalaparti and al, 2010]

Machine 2

e Cloud provider: m machines Machine 1

e n Customers. Customer i wants to
allocate m; tasks

e Machine m; has capacity ¢; and
cost [;i(x) = x X uj

e Clients choose their machine and
minimize cost

e Machines capacities should be
respected

Customer 1 Customer 2 Customer 3

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theor
Constraint Programming
Constraint Games

CRAG constraint model

e P={1,.,n}
o Vie P, Vi={rn, . lim}
o Vie PVkel[l,..,m],D(rik) ={1,...m}

e (C is composed of the following constraints:
o channelling constraints: (rix = j) <> (choicej = 1)
e capacity constraints: Vj € [1,.., m], Zie[Ln] Zke[l‘_m‘] choicej x di < ¢

e Vi€ P, G; is composed of the following constraint:
cost; = Z Z choiceji x 1j(di)
j=l.mk=1..m;
e Vi € P, Opt; = Minimize (cost;)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Constraint Games

ConGa: A Complete Algorithm

A result by [Gottlob and al, 2005]

e Nash Constraint N; for Player i: encodes tuples t = (s;,s_;) such that s; is a
best response to s_; (not unique)

e Theorem: X;cp N; = PNE

In Conga, we compute incrementally the N; J

Tree-search algorithm

e The idea is to traverse all tuples of the search space using a complete
ordering of players and values

Record each player's undominated strategies in a table

Pruning when a tuple has already been proved subject to deviation (complete
detection)

Pruning when a tuple is NBR (partial detection)
e Constraint solver is used to compute hard constraints and deviations

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Constraint Games

Recording Nash Constraints

Nash checking for a tuple s:

Each player is examined in turn, in decreasing order from n to 1

First lookup in tables for already computed deviations

If not found, compute deviation with the solver and record best response in
table

If stable, then check previous player

If Player 1 is stable, then record Nash equilibrium

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Constraint Games

Deleting unuseful table entries

Tables may grow very large
e In theory, tables for Nash constraints can be exponential in size

e In practice, the size is kept reasonable

Complete ordering of variables and values gives a lexicographic traversal of
the search space

Players at high level only record Nash candidates which have been checked by
lower levels

Once a player has backtracked, all subsequent players can delete tables

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Constraint Games

Never Best Responses pruning

Online detection of NBR

iix

4
C,
OO0 @
®

3 *)
T i A
2N ~

—

[~

5999y

/

/
/
/
/
/

We use a counter to
record how many
elements of the
subsequent subspace
have been checked

Once the counter
reaches 0, only
recorded subsequent
elements are checked

Needs to check the
end of the table

Then backjump to
upper level

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

A short example

111 checked for Z

Game theory
Constraint Programming
Constraint Games

A short example

Z moves to 112.
Z's zone explored

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Y:112

Z72

112 checked stable
for Y: 112 recorded
in Y's table

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Y:112

112 checked for X
and moves to 212:
212 recorded in X's table

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Y:112
X:212
X#1 2
Y#1 2
1

121 checked for Z
and moves to 122

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Y:112
X:212
X#1 2
Y; 2
Z52
122 checked for Y:
112 found in Y's table
backtrack

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

A short example

X:212

Search continues with 211.
Y's table are cleaned out

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Experimental results

Constraint Games

Conga compared to Gambit

Name NF gen Gambit Enuml ConGa #PNE
GTTA.3.100 1 17 4 0 1
GTTA.4.100 113 1844 312 2 1
GTTA.5.100 TO - 4032 168 1
GTTA.6.100 TO - 7O 19990 1
LG(GV).2.1000 1 134 339 6 0
LG(GV).2.2000 6 655 1441 31 0
LG(GV).2.3500 17 5337 6789 93 0
LG(GV).2.5000 34 7786 10000 200 0
LG(GV).2.20000 552 MO TO 3389 0
MEG.3.100 1 13 0 0 100
MEG.4.100 91 1555 28 6 100
MEG.5.100 T0 - 2082 403 100
MEG.6.100 TO - TO 18102 100
MEG.30.2 8784 MO 423 503 2
MEG.35.2 TO - 10619 16917 2
TD.3.99 3 14 0 0 1
TD.4.99 76 1572 26 7 1
TD.5.99 8930 MO 2028 446 1
TD.6.99 T0 - TO 14731 1
CG.7.15 253 MO 70 27 630
CG.8.15 4613 MO 1019 371 1680
CG.9.15 TO - 17361 5880 5040
LG(HC).4.30 N/A N/A 26 6 24
LG(HC).5.30 N/A N/A 778 257 240
LG(HC).6.30 N/A N/A TO 13180 2160
CRAG.7.9 N/A N/A 323 57 1
CRAG.8.9 N/A N/A 3300 540 1
CRAG.9.9 N/A N/A 17723 4975 1

Thi Van-Anh Nguyen, Arnaud Lallouet

Times are in seconds

NF gen = Normal
form generation

enuml = Constraint
Game solver without
Nash constraint
computation and
NBR pruning

Time out is 9000s for

generation and 20000s
for solving

Tables grow up to 240
GB for MEG.5.100

Improvement of 1 to 2
orders of magnitude
over Gambit

A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Conclusion

Summary
e PNE are useful for implementing agreements between agents
e Constraint Games allow for representing games in a compact and natural way

e Complete solver: Conga outperforms state-of-the art solver Gambit by 1 to 2
orders of magnitude

Perspectives
e Dynamic heuristics
e Propagation of constraints

e Difficulties to include symmetries in the model

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming
Constraint Games

Thank you for your attention

Questions?

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

	Game theory
	Constraint Programming
	Constraint Games

