
Game theory
Constraint Programming

Constraint Games

A Complete Solver for Constraint Games

Thi Van-Anh Nguyen, Arnaud Lallouet

GREYC, Normandie University, France

COSI, June 10, 2014

Thi-Van-Anh Nguyen is supported by Microsoft Research grant MRL-2011-046

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Contents

1 Game theory

2 Constraint Programming

3 Constraint Games

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Strategic games: the setting

• A set of Players
• Each player performs
Actions...

• ... and wants to maximize an
Utility depending on other
players actions

• Different players have
different utilities

• Strategic form, also called
multimatrix model

In this talk: finite games only (also simultaneous, perfect information, selfish
players)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Strategic games: the setting

• A set of Players
• Each player performs
Actions...

• ... and wants to maximize an
Utility depending on other
players actions

• Different players have
different utilities

• Strategic form, also called
multimatrix model

In this talk: finite games only (also simultaneous, perfect information, selfish
players)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Strategic games: the setting

• A set of Players
• Each player performs
Actions...

• ... and wants to maximize an
Utility depending on other
players actions

• Different players have
different utilities

• Strategic form, also called
multimatrix model

In this talk: finite games only (also simultaneous, perfect information, selfish
players)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Strategic games: the setting

• A set of Players
• Each player performs
Actions...

• ... and wants to maximize an
Utility depending on other
players actions

• Different players have
different utilities

• Strategic form, also called
multimatrix model

In this talk: finite games only (also simultaneous, perfect information, selfish
players)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Strategic games: the setting

• A set of Players
• Each player performs
Actions...

• ... and wants to maximize an
Utility depending on other
players actions

• Different players have
different utilities

• Strategic form, also called
multimatrix model

In this talk: finite games only (also simultaneous, perfect information, selfish
players)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Solution concept

How can we tell when a player is satisfied?
Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:

Pure Nash Equilibrium

Many solution concepts...
• Mixed Nash equilibrium: probability distribution on actions as to maximize
esperance of expected utility

• Pareto Nash equilibrium: such that no Pure Nash equilibrium has better
utility for all players

• . . .
Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Solution concept

How can we tell when a player is satisfied?
Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:

Pure Nash Equilibrium

Many solution concepts...
• Mixed Nash equilibrium: probability distribution on actions as to maximize
esperance of expected utility

• Pareto Nash equilibrium: such that no Pure Nash equilibrium has better
utility for all players

• . . .
Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Solution concept

How can we tell when a player is satisfied?
Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:

Pure Nash Equilibrium

Many solution concepts...
• Mixed Nash equilibrium: probability distribution on actions as to maximize
esperance of expected utility

• Pareto Nash equilibrium: such that no Pure Nash equilibrium has better
utility for all players

• . . .
Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Solution concept

How can we tell when a player is satisfied?
Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:

Pure Nash Equilibrium

Many solution concepts...
• Mixed Nash equilibrium: probability distribution on actions as to maximize
esperance of expected utility

• Pareto Nash equilibrium: such that no Pure Nash equilibrium has better
utility for all players

• . . .
Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Solution concept

How can we tell when a player is satisfied?
Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:

Pure Nash Equilibrium

Many solution concepts...
• Mixed Nash equilibrium: probability distribution on actions as to maximize
esperance of expected utility

• Pareto Nash equilibrium: such that no Pure Nash equilibrium has better
utility for all players

• . . .
Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Solution concept

How can we tell when a player is satisfied?
Find a point where each player chooses the best strategy for him/herself... and for
which no player can improve his/her utility by changing to another action:

Pure Nash Equilibrium

Many solution concepts...
• Mixed Nash equilibrium: probability distribution on actions as to maximize
esperance of expected utility

• Pareto Nash equilibrium: such that no Pure Nash equilibrium has better
utility for all players

• . . .
Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Pure Nash Equilibrium

Economists point of view:
• Accepted solution concepts do not guarantee uniqueness
• A game with no equilibrium or with multiple equilibria means that the
modeler has failed to provide a full and precise prediction for what will happen

• Example: Nash theorem: any finite game in strategic form has a mixed Nash
equilibrium

Modeling point of view

Computer scientists point of view:
• Problems sometimes do not have solution
• Game rules are given and the problem is to find a solution
• Example: efficient allocation in electricity grid market consist to connect
producers and customers

Solving point of view

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Pure Nash Equilibrium

Economists point of view:
• Accepted solution concepts do not guarantee uniqueness
• A game with no equilibrium or with multiple equilibria means that the
modeler has failed to provide a full and precise prediction for what will happen

• Example: Nash theorem: any finite game in strategic form has a mixed Nash
equilibrium

Modeling point of view

Computer scientists point of view:
• Problems sometimes do not have solution
• Game rules are given and the problem is to find a solution
• Example: efficient allocation in electricity grid market consist to connect
producers and customers

Solving point of view

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

How to solve games?

A bit of formalism...
A game is a 3-uple G = (P,A,U)

• P is a set of players
• A = (Ai)i∈P is a set of actions for each player
• U = (ui)i∈P is a set of utility functions for each player, ui : ΠA→ R

Strategies and Equilibrium
• A strategy for player i is the choice of an action si ∈ Ai

• A strategy profile is the given of a strategy for each player (a tuple s ∈ ΠA)
• We denote by s−i the strategy profile of players other than i , s = (si .s−i)

• s is winning for i if ∀s ′i 6= si , ui (s ′i .s−i) ≤ ui (si .s−i)

• s is a Pure Nash Equilibrium (PNE) if ∀i , si is winning for i

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Dominance

Types of dominance
• si is strongly dominated by s ′i if ∀s−i , ui (si .s−i) < ui (s ′i .s−i)

• si is weakly dominated by s ′i if ∀s−i , ui (si .s−i) ≤ ui (s ′i .s−i)

• si is never best response if ∀s−i ,∃s ′i ∈ Ai s.t. ui (si .s−i) < ui (s ′i .s−i)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Dominance

Types of dominance
• si is strongly dominated by s ′i if ∀s−i , ui (si .s−i) < ui (s ′i .s−i)

• si is weakly dominated by s ′i if ∀s−i , ui (si .s−i) ≤ ui (s ′i .s−i)

• si is never best response if ∀s−i ,∃s ′i ∈ Ai s.t. ui (si .s−i) < ui (s ′i .s−i)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Dominance

Types of dominance
• si is strongly dominated by s ′i if ∀s−i , ui (si .s−i) < ui (s ′i .s−i)

• si is weakly dominated by s ′i if ∀s−i , ui (si .s−i) ≤ ui (s ′i .s−i)

• si is never best response if ∀s−i ,∃s ′i ∈ Ai s.t. ui (si .s−i) < ui (s ′i .s−i)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

A generic algorithm to solve games

Solve
function solve(s): tuple
for s ∈ ΠA do

if nash(s) then
return s

end if
end for
return not found

Nash
function nash(s): boolean
for i ∈ P do

if deviation(s, i) then
return false

end if
end for
return true

Deviation
function deviation(s, i): boolean
for v ∈ Ai , v 6= si do

if ui (v .s−i) > ui (s) then
return true

end if
end for
return false

Analysis
• Inefficient but still the baseline

algorithm
• Implemented in the Gambit

solvera along with IESDS
[McKelvey and al, 2010]

ahttp://www.gambit-project.org/

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Contents

1 Game theory

2 Constraint Programming

3 Constraint Games

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Constraint Satisfaction Problems

Constraint Programming is a way of stating and solving problems using variables
and constraints.

Definition (CSP)
A Constraint Satisfaction Problem (or CSP) is built out of 3 parts:

• V : a set of variables
• D: a set of domains
• C : a set of constraints

Here, we focus on Finite Domain CSP

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Constraint Satisfaction Problems

Definition (CSP)
A CSP is a set of constraints.

Logically, it means the conjunction of the constraints.

Definition (Solution)
A solution is an assignment of all variables that satisfies all the constraints
simultaneously.

Example (X < Y < Z)
With X ,Y ,Z ∈ [1..3], the unique solution is X = 1,Y = 2,Z = 3.

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Tree search

Search state:
Let C = (V ,D,C) a CSP.
A search state is composed of a current domain for each variable(a subset of DX
for each X).

Basic algorithm:
• If the current state represents a solution tuple, return this solution
• If the current state represent a non-solution tuple, fail
• Else, create a tree by adding to each branch a constraint:

NP-complete problem: Importance of a good heuristics !

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Local consistency

Reasoning on the CSP:
Consider X > Y :

It is not possible for X to take value 1 and being greater than Y
It is not possible for Y to take value 3 and being lesser than X

Domain Reduction for our
Example
We can prune safely these two
values:

Iteration of the technique up to a fixed point yields consistency

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Modeling Language

CP as a modeling language includes other facilities:
• global constraints: common modeling element with a specific efficient
algorithm

• all-different ensures that all variables take different values
• cumulative ensures that a schedule under resource constraints is feasible
• element relates a value to its position in a table
• . . . the Global Constraint Catalogue records more than 300 global constraints
[Beldiceanu and al]

• choice of heuristics
• modeling language: OPL, MiniZinc, . . .
• multiple domains
• multiple extension: optimization, soft constraints, quantification, . . .

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Contents

1 Game theory

2 Constraint Programming

3 Constraint Games

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Game representation problem

Normal form
• Normal form needs a matrix for representing utilities
• Matrix grow exponentially with the number of players
• 100 players × 2 actions = 100× 2100 entries !

Compact representation is needed!
and many games have a natural understanding

Language for utilities
• if the utilities are not just random, they can (often) be expressed in a
language

• better to understand utilities in terms of simple relationships than lookup in
enormous tables

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Constraint Games

The idea
Use CSP to express utilities

Constraint Satisfaction Game
A Constraint Satisfaction Game (CSG) is a 4-uple CG = (P,V ,D,G) where

• P is a set of players
• V is a set of variables, Player i controls Vi ⊆ V
• D = (Dx)x∈V defines a (finite) domain for each variable
• G = (Gi)i∈P is a family of CSP

Preferences
• CSPs provide a compact and natural formalism to express satisfaction for a
player: Gi is called Goal of Player i

• Goals express preferences and an equilibrium may hold if a player is not
satisfied (and cannot be)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Example of CSG

A simple example:
• Players: P = {X ,Y ,Z}
• Each player owns one variable: VX = {x},VY = {y} and VZ = {z} with
D(x) = D(y) = D(z) = {0, 1, 2}

• Goals are GX = {x 6= y , x > z}, GY = {x ≤ y , y > z} and GZ = {x + y = z}

Payoff multimatrix
z = 0 y

0 1 2

x
0 (0,0,1) (0,1,0) (0,1,0)
1 (1,0,0) (0,1,0) (1,1,0)
2 (1,0,0) (1,0,0) (0,1,0)

z = 1 y
0 1 2

x
0 (0,0,0) (0,0,1) (0,1,0)
1 (0,0,1) (0,0,0) (0,1,0)
2 (1,0,0) (1,0,0) (0,1,0)

z = 2 y
0 1 2

x
0 (0,0,0) (0,0,0) (0,0,1)
1 (0,0,0) (0,0,1) (0,0,0)
2 (0,0,1) (0,0,0) (0,0,0)

in bold are Nash equilibria and italics Nash equilibria with no player satisfied

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

COG and hard constraints

Constraint Optimization Games
Constraint Programming provides an easy way to express optimization: add
min(X) or max(X) to the goal of each player

• Allows to represent in a natural way many useful games (see examples after)

Hard constraints
CSG/COG can be enhanced with a set of hard constraints (HC) to forbid invalid
equilibria

• a strategy profile which does not satisfy HC cannot be an equilibrium and
should not be checked for deviations

• impossible to represent in the matrix model (even by giving a dummy value)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Location Game (Hotelling, 1929)

Variables
• P = {1, .., n}
• ∀i ∈ P,Vi = {li}
• ∀i ∈ P,D(li) = {1, . . .m}
• costic : define the cost customer c has to pay if he/she chooses the stand of
seller i .

• minc : defines the minimal cost customer c has to pay for an ice cream.
• choiceic : boolean variable takes 1 if customer c chooses seller i .
• benefiti : defines the number of customers actually buying from seller i .

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Location Game

Hard constraints
• no two vendors are located at the same place: all_different(l1, l2, . . . , ln)
• ∀i ∈ P,∀c ∈ [1..m], costic = |c − li |+ pi

• ∀c ∈ [1..m], minc = min(cost1c , . . . ,costnc)

• ∀c ∈ [1..m], (minc =costic)← (choiceic = 1)

• ∀c ∈ [1..m],
∑

i∈Pchoiceic = 1

Goal
• Gi : benefiti = pi .

∑
c∈[1..m]choiceic

• Optimization condition Opti = max(benefiti)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Cloud Resource Allocation Game [Jalaparti and al, 2010]

• Cloud provider: m machines
• n Customers. Customer i wants to
allocate mi tasks

• Machine mj has capacity cj and
cost lj(x) = x × uj

• Clients choose their machine and
minimize cost

• Machines capacities should be
respected

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

CRAG constraint model

• P = {1, .., n}
• ∀i ∈ P,Vi = {ri1, ..., rimi}
• ∀i ∈ P,∀k ∈ [1, ...,mi],D(rik) = {1, . . .m}
• C is composed of the following constraints:

• channelling constraints: (rik = j)↔ (choiceijk = 1)
• capacity constraints: ∀j ∈ [1, .., m],

∑
i∈[1..n]

∑
k∈[1..mi]

choiceijk × dik ≤ cj

• ∀i ∈ P,Gi is composed of the following constraint:

costi =
∑

j=1..m

∑
k=1..mi

choiceijk × lj(dik)

• ∀i ∈ P,Opti = Minimize (costi)

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

ConGa: A Complete Algorithm

A result by [Gottlob and al, 2005]
• Nash Constraint Ni for Player i : encodes tuples t = (si , s−i) such that si is a
best response to s−i (not unique)

• Theorem: oni∈P Ni = PNE

In Conga, we compute incrementally the Ni

Tree-search algorithm
• The idea is to traverse all tuples of the search space using a complete
ordering of players and values

• Record each player’s undominated strategies in a table
• Pruning when a tuple has already been proved subject to deviation (complete
detection)

• Pruning when a tuple is NBR (partial detection)
• Constraint solver is used to compute hard constraints and deviations

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Recording Nash Constraints

Nash checking for a tuple s:
• Each player is examined in turn, in decreasing order from n to 1
• First lookup in tables for already computed deviations
• If not found, compute deviation with the solver and record best response in
table

• If stable, then check previous player
• If Player 1 is stable, then record Nash equilibrium

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Deleting unuseful table entries

Tables may grow very large
• In theory, tables for Nash constraints can be exponential in size
• In practice, the size is kept reasonable
• Complete ordering of variables and values gives a lexicographic traversal of
the search space

• Players at high level only record Nash candidates which have been checked by
lower levels

• Once a player has backtracked, all subsequent players can delete tables

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Never Best Responses pruning

Online detection of NBR • We use a counter to
record how many
elements of the
subsequent subspace
have been checked

• Once the counter
reaches 0, only
recorded subsequent
elements are checked

• Needs to check the
end of the table

• Then backjump to
upper level

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

A short example

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

A short example

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

A short example

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

A short example

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

A short example

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

A short example

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

A short example

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Experimental results

Conga compared to Gambit
Name NF gen Gambit Enum1 ConGa #PNE
GTTA.3.100 1 17 4 0 1
GTTA.4.100 113 1844 312 2 1
GTTA.5.100 TO - 4032 168 1
GTTA.6.100 TO - TO 19990 1
LG(GV).2.1000 1 134 339 6 0
LG(GV).2.2000 6 655 1441 31 0
LG(GV).2.3500 17 5337 6789 93 0
LG(GV).2.5000 34 7786 10000 200 0
LG(GV).2.20000 552 MO TO 3389 0
MEG.3.100 1 13 0 0 100
MEG.4.100 91 1555 28 6 100
MEG.5.100 TO - 2082 403 100
MEG.6.100 TO - TO 18102 100
MEG.30.2 8784 MO 423 503 2
MEG.35.2 TO - 10619 16917 2
TD.3.99 3 14 0 0 1
TD.4.99 76 1572 26 7 1
TD.5.99 8930 MO 2028 446 1
TD.6.99 TO - TO 14731 1
CG.7.15 253 MO 70 27 630
CG.8.15 4613 MO 1019 371 1680
CG.9.15 TO - 17361 5880 5040
LG(HC).4.30 N/A N/A 26 6 24
LG(HC).5.30 N/A N/A 778 257 240
LG(HC).6.30 N/A N/A TO 13180 2160
CRAG.7.9 N/A N/A 323 57 1
CRAG.8.9 N/A N/A 3300 540 1
CRAG.9.9 N/A N/A 17723 4975 1

• Times are in seconds
• NF gen = Normal
form generation

• enum1 = Constraint
Game solver without
Nash constraint
computation and
NBR pruning

• Time out is 9000s for
generation and 20000s
for solving

• Tables grow up to 240
GB for MEG.5.100

• Improvement of 1 to 2
orders of magnitude
over Gambit

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Conclusion

Summary
• PNE are useful for implementing agreements between agents
• Constraint Games allow for representing games in a compact and natural way
• Complete solver: Conga outperforms state-of-the art solver Gambit by 1 to 2
orders of magnitude

Perspectives
• Dynamic heuristics
• Propagation of constraints
• Difficulties to include symmetries in the model

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

Game theory
Constraint Programming

Constraint Games

Thank you for your attention

Questions?

Thi Van-Anh Nguyen, Arnaud Lallouet A Complete Solver for Constraint Games

	Game theory
	Constraint Programming
	Constraint Games

