11th Conference on the Optimization and Information Systems, COSI'2014, 8-10 June 2014, Bejaia, Algeria.

Optimal Control of Linear Dynamical System with Intermediate Phase Constraints

Mourad AZI and Mohand-Ouamer BIBI

Tuesday, 11 June 2014

Introduction

- Statement of the problem
- Optimality criteria
 Increment formula of the quality criterion
 Optimality criteria
- Construction of the algorithm
 Control transformation
 Change of support
 Einiching procedure
 - Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

- Introduction
 - Statement of the problem
- **Optimality criteria** Increment formula of the quality criterion Optimality criteria
- **Construction of the algorithm** Control transformation Change of support
 - Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

- Introduction
 - Statement of the problem
 - **Optimality criteria**
 - Increment formula of the quality criterion
 - Optimality criteria
- Construction of the algorithm
 Control transformation
 Change of support
 Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

- Introduction
 - Statement of the problem
 - Optimality criteria
 - Increment formula of the quality criterion
 - Optimality criteria
- 4 Construction of the algorithm
 - Control transformation
 - Change of support
 - Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Introduction

Optimal control theory is an important area of applied mathematics, developed to find optimal way to control management systems, overcome the arduous tasks, predict and control future events and finally to optimize a certain criteria.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Introduction

In this work, we present an extended form of the adaptive method developed by R. Gabasov and F. M. Kirillova for an optimal control problem in Bolza form, vector control and intermediate phase constraints.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Introduction

In this work, we present an extended form of the adaptive method developed by R. Gabasov and F. M. Kirillova for an optimal control problem in Bolza form, vector control and intermediate phase constraints.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Introduction

In this work, we present an extended form of the adaptive method developed by R. Gabasov and F. M. Kirillova for an optimal control problem in Bolza form, vector control and intermediate phase constraints.

Mourad AZI and Mohand-Ouamer BIBI

Introduction

Statement of the problem

Optimality criteria

Construction of the algorithm

Statement of the problem

Mourad AZI and Mohand-Ouamer BIBI

Introduction

Optimality criteria

Construction of the algorithm

Statement of the problem

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

(1d)

In the class of piecewise constant controls, consider the following optimal control problem:

 $egin{aligned} &J(u) = c_1' x(t^*) + \int_0^{t^*} c_2'(t) u(t) dt & \longrightarrow \max, \ &\dot{x} = Ax + Bu + r, \quad x(0) = x_0, \ &g_*(s) \leq H(s) x(t_s) \leq g^*(s), \ &d^- \leq u(t) \leq d^+, \ t \in T = [0,t^*], \end{aligned}$

where: $A = A(K, K), B = B(K, J), H(s)H(I(s), K); g_*(s) = g_*(I(s)), g^* = g^-(I(s)), d^- = g^-(I(s)), d^$

$$x(t) = F(t) \left| x_0 + \int_0^t F^{-1}(\tau) (Bu(\tau) + r(\tau)) d\tau \right|$$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

In the class of piecewise constant controls, consider the following optimal control problem:

$$\begin{aligned} \mathcal{U}(u) &= c_1' x(t^*) + \int_0^{t^*} c_2'(t) u(t) dt & \longrightarrow \max, \end{aligned} \tag{1a} \\ \dot{x} &= Ax + Bu + r, \quad x(0) = x_0, \\ g_*(s) &\leq H(s) x(t_s) \leq g^*(s), \\ d^- &\leq u(t) \leq d^+, \ t \in T = [0, t^*], \end{aligned} \tag{1b}$$

where: $A = A(K, K), B = B(K, J), H(s)H(I(s), K); g_*(s) = g_*(I(s)), g^* = g^*(I(s)), d^- = d^-(J), d^+ = d^-(J), d^+ = d^-(J), d^- = d^-(J), d^+ = d^-(J), d^+ = d^-(J), d^- = d^-(J), d^+ = d^+(J), d^+ = d^+(J$

$$x(t) = F(t) \left| x_0 + \int_0^t F^{-1}(\tau) (Bu(\tau) + r(\tau)) d\tau \right|$$

Mourad AZI and Mohand-Ouamer BIBI

L

Construction of the algorithm

In the class of piecewise constant controls, consider the following optimal control problem:

$$J(u) = c'_{1}x(t^{*}) + \int_{0}^{t^{*}} c'_{2}(t)u(t)dt \longrightarrow \max,$$
(1a)

$$\dot{x} = Ax + Bu + r, \quad x(0) = x_{0},$$
(1b)

$$g_{*}(s) \le H(s)x(t_{s}) \le g^{*}(s),$$
(1c)

$$d^{-} \le u(t) \le d^{+}, \quad t \in T = [0, t^{*}],$$
(1d)

where: $A = A(K, K), B = B(K, J), H(s)H(l(s), K); g_*(s) = g_*(l(s)), g^* = g^*(l(s)), d^- = d^-(J), d^+ = d^-(J), d^- = d^-(J$

$$x(t) = F(t)\left[x_0 + \int_0^t F^{-1}(\tau)(Bu(\tau) + r(\tau))d\tau\right], \quad t \in T, F(t) = \exp(At),$$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

(2)

we can write the dynamic optimization problem (1) in the following equivalent form:

$$\begin{aligned} f' & J(u) = c'_1 F(t^*) x_0 + \int_0^{t^*} c'(t) u(t) dt + \int_0^{t^*} c'_3(t) r(t) dt \longrightarrow \max, \\ & \overline{g}_*(s) \le \int_0^{t_s} \varphi(s, t) u(t) dt \le \overline{g}^*(s), s \in S, \\ & \Lambda^- \le u(t) \le d^+, \ t \in T = [0, t^*], \end{aligned}$$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

(2)

we can write the dynamic optimization problem (1) in the following equivalent form:

$$\begin{array}{l} f(u) = c_1' F(t^*) x_0 + \int_0^{t^*} c'(t) u(t) dt + \int_0^{t^*} c_3'(t) r(t) dt \longrightarrow \max, \\ \overline{g}_*(s) \leq \int_0^{t_s} \varphi(s,t) u(t) dt \leq \overline{g}^*(s), s \in S, \\ d^- \leq u(t) \leq d^+, \ t \in T = [0,t^*], \end{array}$$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Construction of support

In the adaptive method, the principal tool is the support. In order to define it, let us choose a subset $S_{sup} \in S$, and for each $s \in S_{sup}$ we choose an arbitrary subset $I_{sup}(s) \in I(s)$, and we form $I_{sup} = \{I_{sup}(s), s \in S_{sup}\}$, with $|I_{sup}| = p \le \sum_{s \in S} m_s$. On the interval T, we choose also a subset of isolated more that

 $T_{sup} = \{t_k, k \in K_{sup}\}, K_{sup} = \{1, \dots, k^*\}, K_{sup}$

For each moment $t_k \in T_{sup}$, we associate a set of indexes $J_k \subset Such that \sum_{k \in K_{sup}} |J_k| = p$. We assume $J_{sup} = \{J_k, k \in K_{sup}\}$ and $Q_{sup} = \{I_{sup}, J_{sup}, T_{sup}\}$, and form the $p \times p$ matrix:

 $\varphi_{sup} = \varphi(Q_{sup}) = (\varphi_{ij}(s, t_k), \ i \in I_{sup}(s), \ s \in S_{sup} \subset J_k, \ k \in K_{sup}(s)$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Construction of support

In the adaptive method, the principal tool is the support. In order to define it, let us choose a subset $S_{sup} \in S$, and for each $s \in S_{sup}$ we choose an arbitrary subset $I_{sup}(s) \in I(s)$, and we form $I_{sup} = \{I_{sup}(s), s \in S_{sup}\}$, with $|I_{sup}| = p \le \sum_{s \in S} m_s$. On the interval *T*, we choose also a subset of isolated moments:

 $T_{sup} = \{t_k, k \in K_{sup}\}, K_{sup} = \{1, \dots, k^*\}, |K_{sup}| \le p.$

For each moment $t_k \in T_{sup}$, we associate a set of indices $J_k \in$ such that $\sum_{k \in K_{sup}} |J_k| = p$. We assume $J_{sup} = \{J_k, k \in K_{sup}\}$ and $Q_{sup} = \{I_{sup}, J_{sup}, T_{sup}\}$, and form the $p \times p$ matrix:

 $\varphi_{sup} = \varphi(Q_{sup}) = (\varphi_{ij}(s, t_k), \ i \in I_{sup}(s), \ s \in S_{sup} \subset J_k, \ k \in K_{sup}(s)$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Construction of support

In the adaptive method, the principal tool is the support. In order to define it, let us choose a subset $S_{sup} \in S$, and for each $s \in S_{sup}$ we choose an arbitrary subset $I_{sup}(s) \in I(s)$, and we form $I_{sup} = \{I_{sup}(s), s \in S_{sup}\}$, with $|I_{sup}| = p \le \sum_{s \in S} m_s$. On the interval *T*, we choose also a subset of isolated moments:

$$T_{sup} = \{t_k, k \in K_{sup}\}, K_{sup} = \{1, \dots, k^*\}, |K_{sup}| \le p$$

For each moment $t_k \in T_{sup}$, we associate a set of indices such that $\sum_{k \in K_{sup}} |J_k| = p$. We assume $J_{sup} = \{J_k, k \in K_{sup}\}$ and $Q_{sup} = \{I_{sup}, J_{sup}, T_{sup}\}$, and form the $p \times p$ matrix:

 $arphi_{\mathit{sup}} = arphi(\mathit{Q_{sup}}) = (arphi_{\mathit{ij}}(s, t_k), \ \mathit{i} \in \mathit{I_{sup}}(s), \ s \in \mathit{S_{sup}}$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Construction of support

In the adaptive method, the principal tool is the support. In order to define it, let us choose a subset $S_{sup} \in S$, and for each $s \in S_{sup}$ we choose an arbitrary subset $I_{sup}(s) \in I(s)$, and we form $I_{sup} = \{I_{sup}(s), s \in S_{sup}\}$, with $|I_{sup}| = p \le \sum_{s \in S} m_s$. On the interval *T*, we choose also a subset of isolated moments:

$$\mathcal{T}_{sup} = \{t_k, k \in \mathcal{K}_{sup}\}, \ \mathcal{K}_{sup} = \{1, \dots, k^*\}, \ |\mathcal{K}_{sup}| \leq p.$$

For each moment $t_k \in T_{sup}$, we associate a set of indices $J_k \in J$, such that $\sum_{k \in K_{sup}} |J_k| = p$. We assume $J_{sup} = \{J_k, k \in K_{sup}\}$ and $Q_{sup} = \{I_{sup}, J_{sup}, T_{sup}\}$, and form the $p \times p$ matrix:

 $arphi_{{ extstyle sup}} = arphi(oldsymbol{Q}_{{ extstyle sup}}) = (arphi_{{ extstyle ij}}(oldsymbol{s}, t_k), \ i \in I_{{ extstyle sup}}(oldsymbol{s}), \ oldsymbol{s} \in S_{{ extstyle sup}}$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Construction of support

In the adaptive method, the principal tool is the support. In order to define it, let us choose a subset $S_{sup} \in S$, and for each $s \in S_{sup}$ we choose an arbitrary subset $I_{sup}(s) \in I(s)$, and we form $I_{sup} = \{I_{sup}(s), s \in S_{sup}\}$, with $|I_{sup}| = p \le \sum_{s \in S} m_s$. On the interval *T*, we choose also a subset of isolated moments:

$$\mathcal{T}_{sup} = \{t_k, k \in \mathcal{K}_{sup}\}, \ \mathcal{K}_{sup} = \{1, \dots, k^*\}, \ |\mathcal{K}_{sup}| \leq p.$$

For each moment $t_k \in T_{sup}$, we associate a set of indices $J_k \subset J$, such that $\sum_{k \in K_{sup}} |J_k| = p$. We assume $J_{sup} = \{J_k, k \in K_{sup}\}$ and $Q_{sup} = \{I_{sup}, J_{sup}, T_{sup}\}$, and form the $p \times p$ matrix:

 $\varphi_{sup} = \varphi(Q_{sup}) = (\varphi_{ij}(s, t_k), \ i \in I_{sup}(s), \ s \in S_{sup} \ j \in J_k, \ k \in K_{sup})$

Mourad AZI and Mohand-Ouamer BIBI

Int	rn	Ы		2	11	n	n
	v	u	u	•	u	u	

Optimality criteria

Construction of the algorithm

1011 45

121

Definition 1

A piecewise constant control $u(t), t \in T$, is said to be an admissible control if it satisfies the constraints (1b) and (1c).

Definition 2

An admissible control $u^0(t), t \in T$, is called an optimal control if

 $J(u^0)=\max J(u).$

Definition 3

Moreover, we call ϵ -optimal (or suboptimal) control any admissible control $u^{\epsilon}(t), t \in T$, satisfying the inequality:

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

(5)

121

Definition 1

A piecewise constant control $u(t), t \in T$, is said to be an admissible control if it satisfies the constraints (1b) and (1c).

Definition 2

An admissible control $u^0(t), t \in T$, is called an optimal control if

 $J(u^0)=\max J(u).$

Definition 3

Moreover, we call ϵ -optimal (or suboptimal) control any admissible control $u^{\epsilon}(t), t \in T$, satisfying the inequality:

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

(5)

(6)

1 Par

Definition 1

A piecewise constant control $u(t), t \in T$, is said to be an admissible control if it satisfies the constraints (1b) and (1c).

Definition 2

An admissible control $u^0(t), t \in T$, is called an optimal control if

$$J(u^0)=\max J(u).$$

Definition 3

Moreover, we call ϵ -optimal (or suboptimal) control any admissible control $u^{\epsilon}(t), t \in T$, satisfying the inequality:

$$J(u^0) - J(u^{\varepsilon}) \leq \varepsilon$$

Mourad AZI and Mohand-Ouamer BIBI

Ini	ro	41	inti	on
	ΠU	uı	161	

Optimality criteria

Construction of the algorithm

Definition 4

The set $Q_{sup} = \{I_{sup}, J_{sup}, T_{sup}\}$ is called a support of the problem (1) if $det\varphi_{sup} \neq 0$.

Definition 5

The pair $\{u, Q_{sup}\}$ formed by an admissible control u and a support Q_{sup} is called an admissible support control.

Mourad AZI and Mohand-Ouamer BIBI

Int	ro	au	nti	$\mathbf{n}\mathbf{n}$
	10	uu	υu	

Construction of the algorithm

Definition 4

The set $Q_{sup} = \{I_{sup}, J_{sup}, T_{sup}\}$ is called a support of the problem (1) if $det\varphi_{sup} \neq 0$.

Definition 5

The pair $\{u, Q_{sup}\}$ formed by an admissible control u and a support Q_{sup} is called an admissible support control.

Mourad AZI and Mohand-Ouamer BIBI

Introduction

Statement of the problem

Optimality criteria

Construction of the algorithm

Optimality criteria

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Increment formula of the quality criterion Table of contents

- Introduction
 - Statement of the problem
 - Optimality criteria
 Increment formula of the quality criterion
 Optimality criteria
- Construction of the algorithm
 Control transformation
 Change of support
 - Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

Optimality criteria

Construction of the algorithm

Increment formula of the quality criterion

Increment formula of the functional

Let $\{u, Q_{sup}\}$ be a support control of problem (1) and consider another admissible control $\overline{u}(t) = u(t) + \Delta u(t)$ and its corresponding trajectory $\overline{x}(t) = x(t) + \Delta x(t), t \in T$.

Mourad AZI and Mohand-Ouamer BIBI

Optimality criteria

Construction of the algorithm

(7)

Increment formula of the quality criterion

Increment formula of the functional

Let $\{u, Q_{sup}\}$ be a support control of problem (1) and consider another admissible control $\overline{u}(t) = u(t) + \Delta u(t)$ and its corresponding trajectory $\overline{x}(t) = x(t) + \Delta x(t), t \in T$.

The increment formula of the functional is expressed as follows:

$$J(u) = J(\overline{u}) - J(u)$$

= $c'_1 F(t^*) x_0 + \int_0^{t^*} (c'(t) \overline{u}(t) + c'_3(t) r(t)) dt$
- $c'_1 F(t^*) x_0 - \int_0^{t^*} (c'(t) u(t) + c'_3(t) r(t)) dt$
= $\int_0^{t^*} c'(t) (\overline{u}(t) - u(t)) dt = \int_0^{t^*} c'(t) \Delta u(t) dt.$

Mourad AZI and Mohand-Ouamer BIBI

Introduction

Statement of the problem

Optimality criteria

Construction of the algorithm

Increment formula of the quality criterion

Using these relations, the increment of the functional becomes:

$$\Delta J(u) = \sum_{s \in S_{sup}} \sum_{i \in I_{sup}(s)} y_i(s) v_i(s) - \int_0^t E'(t) \Delta u(t) dt.$$

where: $H(s)\Delta x(t_s) = v(s)$.

Therefore, it is clear that the maximum of this increment of the functional under the constraints :

 $\begin{cases} g_{*i}(s) - H_s(i, K)x(t_s) \le v_i(s) \le g_i^*(s) - H_s(i, K)x(t) = i \in I_{su} \\ d^- - u(t) \le \Delta u(t) \le d^+ - u(t), \quad t \in T, \end{cases}$

Mourad AZI and Mohand-Ouamer BIBI

Introduction

Optimality criteria

Construction of the algorithm

Increment formula of the quality criterion

Using these relations, the increment of the functional becomes:

$$\Delta J(u) = \sum_{s \in S_{sup}} \sum_{i \in I_{sup}(s)} y_i(s) \upsilon_i(s) - \int_0^{t^*} E'(t) \Delta u(t) dt.$$
(11)

where: $H(s)\Delta x(t_s) = v(s)$.

Therefore, it is clear that the maximum of this increment of the functional under the constraints :

 $\left\{\begin{array}{l}g_{*i}(s) - H_s(i,K)x(t_s) \leq \upsilon_i(s) \leq g_i^*(s) - H_s(i,K)x(t_s), & i \in I_{su}\\ d^- - u(t) \leq \Delta u(t) \leq d^+ - u(t), & t \in T,\end{array}\right.$

Mourad AZI and Mohand-Ouamer BIBI

Introd	uction	Staten	nent of the problem	Optimality criteria ○○○○● ○○○	Construction of the algorithm
Increr	nent formula of th	ne qualit	y criterion		
	is equal to	:			
	$\beta(u, Q_{sup})$	=	$\sum_{j=1}^r \left[\int_{\mathcal{T}_j^+} E_j(t) (u_j(t)) \right]$	$(-d_j^-)dt+\int_{T_j^-}E_j$	$(t)(u_j(t)-d_j^+)dt$
		+	$\sum_{s \in S_{sup}} \sum_{y_i(s) < 0, i \in I_{sup}(s)}$	$y_i(s)v_i^-(s) + \sum_{s \in S_{sup}}$	$\sum_{y_i(s)>0,i\in I_{sup}(s)}y_i(s)v_i^+($

where

 $H_s = H(s), \ T_j^+ = \{t \in T : E_j(t) > 0\}, \ T_j^- = \{t \in T : E_j(t) < 0\}, \ j \in J_s$

and

 $v^{-}(l(s)) = (v_{i}^{-}(s), i \in l(s)) = g_{*}(s) - H(s)x(t_{s}), s \in S_{s}$

 $v^+(l(s)) = (v_i^+(s), i \in l(s)) = g^*(s) - H(s)x(t_s), s \in S.$

A AND A HAVE AN AND A AND A

The number $\beta(u, Q_{sup})$ is called the suboptimality estimate of the support control $\{u, Q_{sup}\}$

Mourad AZI and Mohand-Ouamer BIBI

Int	ro	Ч		oti	ion	
	u u	u	u	ບແ		

Optimality criteria ○○○○● ○○○ Construction of the algorithm

(s

0

CENTRAL CONTRACTOR

Increment formula of the quality criterion

is equal to:

$$\begin{split} \beta(u, Q_{sup}) &= \sum_{j=1}^{r} \left[\int_{T_{j}^{+}} E_{j}(t)(u_{j}(t) - d_{j}^{-}) dt + \int_{T_{j}^{-}} E_{j}(t)(u_{j}(t) - d_{j}^{+}) dt \right] \\ &+ \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) > 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) v_{i}^{-}(s) + \sum_{s \in S_{sup}(s)} y_{i}(s) + \sum_{s \in S_{sup}(s)} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) + \sum_{s \in S_{sup}(s)} \sum_{y_{i}(s) < 0, i \in I_{sup}(s)} y_{i}(s) + \sum_{s \in S_{sup}(s)} y_{i}(s) + \sum_{s \in S_{sup}$$

where

$$H_{s} = H(s), \ T_{j}^{+} = \{t \in T : E_{j}(t) > 0\}, \ T_{j}^{-} = \{t \in T : E_{j}(t) < 0\}, \ j \in J_{s}$$

and

$$v^{-}(l(s)) = (v_{i}^{-}(s), i \in l(s)) = g_{*}(s) - H(s)x(t_{s}), s \in S,$$
$$v^{+}(l(s)) = (v_{i}^{+}(s), i \in l(s)) = g^{*}(s) - H(s)x(t_{s}), s \in S.$$

The number $\beta(u, Q_{sup})$ is called the suboptimality estimate of the support control $\{u, Q_{sup}\}$

Mourad AZI and Mohand-Ouamer BIBI

00000

Construction of the algorithm

Table of contents

- Introduction
- Statement of the problem
- Optimality criteria
 Increment formula of the quality criterion
 - Optimality criteria
- Construction of the algorithm
 Control transformation
 Change of support
 Einiphing procedure
 - Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

In	ha.	~ .	4.		-	ы.	~	•
	u١	υ	u١	u١	الحا	u		

Optimality criteria

00000

Construction of the algorithm

(13)

Optimality criteria

Theorem 1 "Optimality criteria"

Let (u, Q_{sup}) be a support control of the problem (1). The following relations

$$egin{array}{lll} E_j(t) \geq 0, & \mbox{if} & u_j(t) = d_j^-, \ E_j(t) \leq 0, & \mbox{if} & u_j(t) = d_j^+, \ E_j(t) = 0, & \mbox{if} & d_j^- < u_j(t) < d_j^+, & t \in T, \ j \in J; \end{array}$$

$$egin{array}{ll} y_i(s) \geq 0, & ext{if} \;\; H_s(i,K)x(t_s) = g_i^*(s), \ y_i(s) \leq 0, & ext{if} \;\; H_s(i,K)x(t_s) = g_{*i}(s), \ y_i(s) = 0, & ext{if} \;\; g_{*i}(s) < H_s(i,K)x(t_s) < g_i^*(s), \;\; i \in I_{sup}(s), \;\; s \in S_{sup}, \end{array}$$

are sufficient, and in the case of nondegeneracy also necessary, for the optimality of the support control (u, Q_{sup}) .

Mourad AZI and Mohand-Ouamer BIBI

In	ha.	~ .	4.		-	ы.	~	•
	u١	υ	u١	u١	الحا	u		

Optimality criteria

00000

Construction of the algorithm

(13)

Optimality criteria

Theorem 1 "Optimality criteria"

Let (u, Q_{sup}) be a support control of the problem (1). The following relations

$$egin{array}{lll} E_j(t) \geq 0, & \mbox{if} & u_j(t) = d_j^-, \ E_j(t) \leq 0, & \mbox{if} & u_j(t) = d_j^+, \ E_j(t) = 0, & \mbox{if} & d_j^- < u_j(t) < d_j^+, & t \in T, \ j \in J; \end{array}$$

$$egin{array}{lll} y_i(s) \geq 0, & ext{if} \;\; H_s(i,K)x(t_s) = g_i^*(s), \ y_i(s) \leq 0, & ext{if} \;\; H_s(i,K)x(t_s) = g_{*i}(s), \ y_i(s) = 0, & ext{if} \;\; g_{*i}(s) < H_s(i,K)x(t_s) < g_i^*(s), \;\; i \in I_{sup}(s), \;\; s \in S_{sup}, \end{array}$$

are sufficient, and in the case of nondegeneracy also necessary, for the optimality of the support control (u, Q_{sup}) .

Mourad AZI and Mohand-Ouamer BIBI

Optimality criteria

00000

Construction of the algorithm

Optimality criteria

Construction of the algorithm

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

000000 00000 00000

Construction of the Algorithm

Then let $\varepsilon \ge 0$ and $\{u, Q_{sup}\}$ be an initial support control. The aim of the algorithm is to construct a suboptimal control u^{ε} or an optimal control u^{0} . An iteration of the algorithm consists on moving from $\{u, Q_{sup}\}$ to another support control $\{\overline{u}, \overline{Q}_{sup}\}$ such that $J(\overline{u}) \ge J(u)$. The developed algorithm has three procedures:

- the control transformation $u \longrightarrow \overline{u}$;
- the support transformation $Q_{sup} \longrightarrow \overline{Q}_{sup}$;
- the finishing procedure.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

000000

Construction of the Algorithm

Then let $\varepsilon \ge 0$ and $\{u, Q_{sup}\}$ be an initial support control. The aim of the algorithm is to construct a suboptimal control u^{ε} or an optimal control u^{0} . An iteration of the algorithm consists on moving from $\{u, Q_{sup}\}$ to another support control $\{\overline{u}, \overline{Q}_{sup}\}$ such that $J(\overline{u}) \ge J(u)$. The developed algorithm has three procedures:

- the control transformation $u \longrightarrow \overline{u}$;
- the support transformation $Q_{sup} \longrightarrow \overline{Q}_{sup}$;
- the finishing procedure.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

000000

Construction of the Algorithm

Then let $\varepsilon \ge 0$ and $\{u, Q_{sup}\}$ be an initial support control. The aim of the algorithm is to construct a suboptimal control u^{ε} or an optimal control u^{0} . An iteration of the algorithm consists on moving from $\{u, Q_{sup}\}$ to another support control $\{\overline{u}, \overline{Q}_{sup}\}$ such that $J(\overline{u}) \ge J(u)$. The developed algorithm has three procedures:

- the control transformation $u \longrightarrow \overline{u}$;
- the support transformation $Q_{sup} \longrightarrow \overline{Q}_{sup}$;
- the finishing procedure.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm ●○○○○○ ○○○○○

Control transformation Table of contents

Introduction

- Statement of the problem
- Optimality criteria
 Increment formula of the quality criterion
 Optimality criteria
- Construction of the algorithm
 Control transformation
 Change of support
 - Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

Optimality criteria

Construction of the algorithm ○●○○○○ ○○○○○ ○○○○○

Control transformation

Let $\epsilon \ge 0$ be a given number and $\{u, Q_{sup}\}$ a support control verifying $\beta(u, Q_{sup}) > \epsilon$. We construct another admissible control $\overline{u}(t) = u(t) + \theta \Delta u(t), t \in T$, such that $J(\overline{u}) \ge J(u)$, where $\Delta u(t)$ is an ascent direction and $\theta \ge 0$ is the step along this direction. For this, let $\alpha > 0$ and h > 0, be the parameters of the algorithm and:

Mourad AZI and Mohand-Ouamer BIBI

Optimality criteria

Construction of the algorithm ○●○○○○ ○○○○○

Control transformation

Let $\epsilon \geq 0$ be a given number and $\{u, Q_{sup}\}$ a support control verifying $\beta(u, Q_{sup}) > \epsilon$. We construct another admissible control $\overline{u}(t) = u(t) + \theta \Delta u(t), t \in T$, such that $J(\overline{u}) \geq J(u)$, where $\Delta u(t)$ is an ascent direction and $\theta \geq 0$ is the step along this direction. For this, let $\alpha > 0$ and h > 0, be the parameters of the algorithm and:

Construct the sets:

$$T_{\alpha} = \{t \in T : \eta(t) \le \alpha\}, \quad T_* = T \setminus T_{\alpha},$$

with $\eta(t) = \min_{j \in J} |E_j(t)|, t \in T.$

• We subdivide T_{α} into intervals $[\tau_k, \tau^k]$, $k = \overline{1, N}$, $\tau_k < \tau^k \leq \tau_{k+1}$, $T_{\alpha} = \bigcup_{k=1}^{N} [\tau_k, \tau^k]$, so that $\tau^k - \tau_k \leq \underline{h}$; $T_{sup} \subset \{\tau_k, k = \overline{1, N}\}$; $u_j(t) = u_{jk} = const$, $t \in [\tau_k, \tau^k]$, $k = \overline{1, N}$, $j \in J$.

Mourad AZI and Mohand-Ouamer BIBI

Optimality criteria

Construction of the algorithm ○●○○○○ ○○○○○

Control transformation

Let $\epsilon \geq 0$ be a given number and $\{u, Q_{sup}\}$ a support control verifying $\beta(u, Q_{sup}) > \epsilon$. We construct another admissible control $\overline{u}(t) = u(t) + \theta \Delta u(t), t \in T$, such that $J(\overline{u}) \geq J(u)$, where $\Delta u(t)$ is an ascent direction and $\theta \geq 0$ is the step along this direction. For this, let $\alpha > 0$ and h > 0, be the parameters of the algorithm and:

Construct the sets:

$$T_{\alpha} = \{t \in T : \eta(t) \le \alpha\}, \quad T_* = T \setminus T_{\alpha},$$

with $\eta(t) = \min_{i \in J} |E_j(t)|, t \in T.$

• We subdivide T_{α} into intervals $[\tau_k, \tau^k]$, $k = \overline{1, N}$, $\tau_k < \tau^k \le \tau_{k+1}$, $T_{\alpha} = \bigcup_{k=1}^{N} [\tau_k, \tau^k]$, so that $\tau^k - \tau_k \le h$; $T_{sup} \subset \{\tau_k, k = \overline{1, N}\}$; $u_j(t) = u_{jk} = const$, $t \in [\tau_k, \tau^k]$, $k = \overline{1, N}$, $j \in J$.

Mourad AZI and Mohand-Ouamer BIBI

• Then we compute the following quantities:

$$\beta_{jk} = -\int_{\tau_k}^{\tau^k} E_j(t)dt, \qquad q_{jk}(s) = \int_{\tau_k}^{\tau^k} \varphi_j(s,t)dt, \quad k = \overline{1, N}, \quad j \in J, \quad s \in S,$$
(14)

$$\beta_{N+1} = -\sum_{j=1}^{r} \int_{T_*} E_j(t) \Delta u_j(t) dt + \sum_{i \in I_{SUP}(s), s \in S_{SUP}} y_i(s) \overline{v}_i(s),$$
(15)

(17)

(18)

$$q_{i(N+1)}(s) = \sum_{j=1}^{r} \int_{\mathcal{T}_{*}} \varphi_{\overline{ij}}(s,t) \Delta u_{j}(t) dt - \overline{\psi}_{i}(s), i \in I_{sup}(s), s \in S_{sup}(s)$$

$$q_{i(N+1)}(s) = \sum_{j=1}^{r} \int_{T_*} \varphi_{ij}(s,t) \Delta u_j(t) dt, \ i \in I_c(s), \ s \in S,$$

where

$$\overline{\upsilon}_{i}(s) = \begin{cases} g_{i}^{*}(s) - H_{s}(i, K)x(t_{s}), & \text{if } y_{i}(s) < 0, \ i \in I(s), \ s \in S \\ g_{*i}(s) - H_{s}(i, K)x(t_{s}), & \text{if } y_{i}(s) > 0, \ i \in I(s), \ s \in S \end{cases}$$

and

$$\Delta u_j(t) = \begin{cases} d_j^+ - u_j(t), & \text{if } E_j(t) < -\alpha, \\ d_j^- - u_j(t), & \text{if } E_j(t) > \alpha, \end{cases} \quad t \in T_*, \ j = \overline{1, r}.$$

Let us set

$$\begin{aligned} f_*(I_c(s)) &= g_*(I_c(s)) - H(I_c(s), K)x(t_s), \\ f^*(I_c(s)) &= g^*(I_c(s)) - H(I_c(s), K)x(t_s), \ s \in S \\ f_*(I_{SUP}) &= f^*(I_{SUP}) = 0; \end{aligned}$$

Los Ares			
Inth	na	IICTI	nn
	u u	u o u	••••

Construction of the algorithm ○○○●○○ ○○○○○ ○○○○○

Control transformation

• Using these quantities, we formulate the following support linear problem:

$$\beta' I \longrightarrow \max,$$
 (20a

$$f_{*}(s) \leq \sum_{j=1}^{r} \sum_{k=1}^{N} q_{jk}(s) I_{jk} + q_{N+1}(s) I_{N+1} \leq f^{*}(s), s \in S, \quad (20b)$$

$$d_{j}^{-} - u_{jk} \leq I_{jk} \leq d_{j}^{+} - u_{jk}, \ \ j = \overline{1, r}, \ \ k = \overline{1, N}, \quad 0 \leq I_{N+1} \leq 1. \quad (20c)$$

Mourad AZI and Mohand-Ouamer BIBI

Introduction	Statement of the problem	Optimality criteria 00000 000	Construction of the algor ○○○○ ○○○○○ ○○○○○	ithm
Control transform	nation			
			M. M.	
• L	et $\{I^{\varepsilon}, \overline{Q}_{B}\}$ be an ε -optimal	of (20), with $\overline{Q}_B =$	$= \{\overline{I}_{sup}, \overline{J}_B, \overline{T}_B\}.$	-
			n (1) is expressed	ATTA A
			$k = \overline{1, N},$ $T_*, \qquad (21)$	
e J	and $\widetilde{Q}_{sup} = \{\widetilde{I}_{sup}, \widetilde{J}_{sup}, \widetilde{T}_{sup}, sup = \{\overline{J}_k, k \in \overline{S}_B\}, \widetilde{T}_{sup}$	$\begin{array}{l} \label{eq:supersolution} \begin{tabular}{l} \label{eq:supersolution} \end{tabular} tabua$	$),s\in \widetilde{S}_{sup},$	
			5	200

Mourad AZI and Mohand-Ouamer BIBI

Introduction	Statement of the problem	Optimality criteria 00000 000	Construction of the algorithm oooo●o oooooo ooooo
Control transformation	1		
			We PIN

- Let $\{I^{\varepsilon}, \overline{Q}_B\}$ be an ε -optimal of (20), with $\overline{Q}_B = \{\overline{I}_{sup}, \overline{J}_B, \overline{T}_B\}$.
- the new support control { u, Q_s } of the problem (1) is expressed as follows:

$$\overline{u}_{j}(t) = \begin{cases} u_{j}(t) + l_{jk}^{\epsilon}, & t \in [\tau_{k}, \tau^{k}], \ k = \overline{1, N}, \\ u_{j}(t) + l_{N+1}^{\epsilon} \Delta u_{j}(t), & j = \overline{1, r}, \ t \in T_{*}, \end{cases}$$
(21)

and
$$Q_{sup} = \{I_{sup}, J_{sup}, T_{sup}\}, I_{sup}(s) = \overline{I}_{sup}(s), s \in S_{sup},$$

 $\widetilde{J}_{sup} = \{\overline{J}_k, k \in \overline{S}_B\}, \widetilde{T}_{sup} = \{\tau_k, k \in \overline{S}_B\}.$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm ○○○○○ ○○○○○

Control transformation

Optimality of a new support control

- **1** If $\beta(\overline{u}, Q_{sup}) \leq \epsilon$, then \overline{u} is an ϵ -optimal control for the problem (1);
 - Otherwise, we perform either a new iteration with a support control { *ū*, *Q̃*_{sup} } and parameters *ᾱ* < *α*, *h̄* < *h*, or we do the change of the support.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm ○○○○○ ○○○○○

Control transformation

Optimality of a new support control

- If β(ū, Q̃_{sup}) ≤ ε, then ū is an ε-optimal control for the problem (1);
- Otherwise, we perform either a new iteration with a support control {*ū*, *Q̃_{sup}*} and parameters *ᾱ* < *α*, *h̄* < *h*, or we do the change of the support.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

000000 00000 00000

Table of contents

- Introduction
- 2) Statement of the problem
- Optimality criteria
 Increment formula of the quality criterion
 Optimality criteria
- Construction of the algorithm
 Control transformation
 - Change of support
 - Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

Optimality criteria

Construction of the algorithm

000000 00000 00000

Change of support

Change of support

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm ○○○○○○ ○○●○○ ○○○○○

Change of support

Change of support

Let $\{\overline{u}, \widetilde{Q}_{sup}\}$ be the support control found after the resolution of the problem (20). Calculate with the formula (9) the cocontrol $\widetilde{E}'(t) = -\widetilde{\psi}'(t)B - c'_2(t), t \in T$, corresponding to $\{\overline{u}, \widetilde{Q}_{sup}\}$. After that, we construct the quasicontrol $w(t), t \in T$:

$$w_{j}(t) = \begin{cases} d_{j}^{-}, & \text{if } \widetilde{E}_{j}(t) > 0, \\ d_{j}^{+}, & \text{if } \widetilde{E}_{j}(t) < 0, \\ \in [d_{j}^{-}, d_{j}^{+}], & \text{if } \widetilde{E}_{j}(t) = 0, \quad j = \overline{1, r}, \quad t \in T, \end{cases}$$
(22)

and the corresponding quasitrajectory $\chi(t), t \in T$:

$$\dot{\chi} = A\chi + Bw + r, \ \chi(0) = x_0,$$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

(23)

Change of support

Change of support

Let $\{\overline{u}, \widetilde{Q}_{sup}\}$ be the support control found after the resolution of the problem (20). Calculate with the formula (9) the cocontrol $\widetilde{E}'(t) = -\widetilde{\psi}'(t)B - c'_2(t), t \in T$, corresponding to $\{\overline{u}, \widetilde{Q}_{sup}\}$. After that, we construct the quasicontrol $w(t), t \in T$:

$$w_{j}(t) = \begin{cases} d_{j}^{-}, & \text{if } \widetilde{E}_{j}(t) > 0, \\ d_{j}^{+}, & \text{if } \widetilde{E}_{j}(t) < 0, \\ \in [d_{i}^{-}, d_{j}^{+}], & \text{if } \widetilde{E}_{j}(t) = 0, \quad j = \overline{1, r}, \quad t \in T, \end{cases}$$
(22)

and the corresponding quasitrajectory $\chi(t)$, $t \in T$:

$$\dot{\chi} = A\chi + Bw + r, \quad \chi(\mathbf{0}) = x_0.$$

Mourad AZI and Mohand-Ouamer BIBI

Introduction

Statement of the problem

Optimality criteria

Construction of the algorithm ○○○○○○ ○○○●○ ○○○○○

(24)

Change of support

• Then compute the vectors:

$$\gamma(\widetilde{J}_{\textit{sup}},\widetilde{T}_{\textit{sup}}) = \widetilde{\varphi}_{\textit{sup}}^{-1} \left(g_*^*(\widetilde{I}_{\textit{sup}}(\boldsymbol{s})) - \mathcal{H}(\widetilde{I}_{\textit{sup}}(\boldsymbol{s}),\mathcal{K})\chi(t_s), \boldsymbol{s} \in \mathcal{S}_{\textit{sup}} \right),$$

$$\gamma_i^*(\boldsymbol{s}) = \sum_{j \in \widetilde{J}_k, k \in \widetilde{K}_{sup}} arphi_{ij}(\boldsymbol{s}, t_k) \gamma(j, t_k) + \mathcal{H}_{\boldsymbol{s}}(i, \mathcal{K}) \chi(t_{\boldsymbol{s}}) - \boldsymbol{g}_i^*(\boldsymbol{s}), \ i \in \widetilde{I}_{c}(\boldsymbol{s})$$

$$\gamma_{*i}(s) = \sum_{j \in \widetilde{J}_k, k \in \widetilde{K}_{sup}} \varphi_{ij}(s, t_k) \gamma(j, t_k) + \mathcal{H}_s(i, \mathcal{K}) \chi(t_s) - g_{*i}(s), \ i \in \widetilde{I}_c(s).$$

where

$$g^*_{*i}(s) = \left\{ egin{array}{cc} g_{*i}(s), & ext{if } \widetilde{y}_i(s) < 0, \ g^*_i(s), & ext{if } \widetilde{y}_i(s) > 0, \end{array}
ight.$$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm ○○○○○ ○○○○●

(26)

Change of support

● If :

$$||\gamma(\widetilde{J}_{sup},\widetilde{T}_{sup})|| \le \mu,$$
(25)

$$\gamma^*(\widetilde{\mathit{I}}_{\mathit{c}}({\boldsymbol{s}})) \geq {\boldsymbol{0}}, \;\; \gamma_*(\widetilde{\mathit{I}}_{\mathit{c}}({\boldsymbol{s}})) \leq {\boldsymbol{0}}, \;\; {\boldsymbol{s}} \in {\boldsymbol{S}},$$

are verified, then we perform the finishing procedure with a support $\overline{Q}_{sup} = \widetilde{Q}_{sup}$.

• **Otherwise,** we will change the support $(Q_{sup} \longrightarrow \overline{Q}_{sup})$ with an iteration of the dual method.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

Change of support

● If :

$$||\gamma(\widetilde{J}_{sup},\widetilde{T}_{sup})|| \le \mu,$$
 (25)

$$\gamma^*(\widetilde{I}_c(s)) \ge 0, \ \gamma_*(\widetilde{I}_c(s)) \le 0, \ s \in S,$$
 (26)

are verified, then we perform the finishing procedure with a support $\overline{Q}_{sup} = \widetilde{Q}_{sup}$.

Otherwise, we will change the support (*Q̃_{sup}* → *Q̃_{sup}*) with an iteration of the dual method.

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

000000

Finishing procedure Table of contents

- Introduction
- 2) Statement of the problem
- Optimality criteria
 Increment formula of the quality criterion
 Optimality criteria
- 4 Construction of the algorithm
 - Control transformation
 - Change of support
 - Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

Optimality criteria

Construction of the algorithm

000000 00000 00000

Finishing procedure

Finishing procedure

Mourad AZI and Mohand-Ouamer BIBI

 $g^*_{*i}(s)+H_s(i,K)\chi(t_s)=0, \ \ i\in I_{sup}(s), s\in S_{sup},$

where $V_k(T^*_{sup}), k \in K^*_{sup}$, verifies the relations :

 $E_j(V_k(T_{sup}^*), T_{sup}^*) = 0, \ V_k(T_{sup}) = t_k, \ j \in J_k, \ k \in K_{sup};$

 $E(t, T^*_{sup}) = \sum_{s \in S^*_{sup}} y^*(s)\varphi(s, t) - c(t).$

Mourad AZI and Mohand-Ouamer BIBI

$$\sum_{j\in\overline{J}_{k}}\sum_{k\in\overline{K}_{sup}}(d_{j}^{+}-d_{j}^{-})sign\dot{E}_{j}(t_{k})\int_{t_{k}}^{V_{k}(T_{sup}^{*})}\varphi_{ij}(s,t)dt - (27)$$
$$g_{*i}^{*}(s) + H_{s}(i,K)\chi(t_{s}) = 0, \quad i\in\overline{I}_{sup}(s), s\in\overline{S}_{sup},$$

where $V_k(T^*_{sup}), k \in K^*_{sup}$, verifies the relations :

$$\begin{split} E_{j}(V_{k}(T_{sup}^{*}), T_{sup}^{*}) &= 0, \quad V_{k}(\overline{T}_{sup}) = t_{k}, \quad j \in \overline{J}_{k}, \quad k \in \overline{K}_{sup}; \\ E(t, T_{sup}^{*}) &= \sum_{s \in S_{sup}^{*}} y^{*}(s)\varphi(s, t) - c(t). \end{split}$$

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

00000

Finishing procedure

- We solve the equation (27) with Newton method. For each approximation, if the conditions (26) are not verified, then we change the support via the dual method in order to get the relation (26).
- Let $Q_{sup}^* = \{I_{sup}^*, J_{sup}^*, T_{sup}^*\}$ be a solution of the system (27). Then the quasicontrol $w^*(t), t \in T$, calculated with the support Q_s^* , (22) and (23) is an admissible and optimal control of the problem (1).

Mourad AZI and Mohand-Ouamer BIBI

Construction of the algorithm

00000

Finishing procedure

- We solve the equation (27) with Newton method. For each approximation, if the conditions (26) are not verified, then we change the support via the dual method in order to get the relation (26).
- Let $Q_{sup}^* = \{I_{sup}^*, J_{sup}^*, T_{sup}^*\}$ be a solution of the system (27). Then the quasicontrol $w^*(t)$, $t \in T$, calculated with the support Q_s^* , (22) and (23) is an admissible and optimal control of the problem (1).

Mourad AZI and Mohand-Ouamer BIBI

Merci pour votre attention!

